Conclusions
Biodentine is a biocompatible material, creates dentinal bridges, and presents an efficient adhesion and sealing. It has superior mechanical properties than those of other silicate cements including MTA, also improving manageability and the setting time.

- Oral Presentation 71
TITLE: Lithium disilicate–based ceramics: step by step of the adhesive cementation
AUTHORS: Santos Puerta N, Otero Mena I, Souza Andrade J.
SOURCE: J Clin Exp Dent. 2014 1;6 (Supplement1):S34.
* doi:10.4317/jced.17643855
http://dx.doi.org/10.4317/jced.17643855

Introduction
Advances in adhesive dentistry have improved the clinical performance of composite resins and dental ceramics. This success is due to the physico-chemical interaction across the interface between the adhesive and the ceramic surface. The cementation process is vital for the clinical success of all-ceramic restorations. Bonding to lithium disilicate -based ceramics is obtained by two simultaneous mechanisms: micromechanical retention provided by acid-etching of the ceramic surface with hydrofluoric acid and chemical bonds between the inorganic phase of the ceramic and the organic phase of the resin cement by the application of a silane.

Case report
A healthy 34-year-old woman was referred to the Master of Endodontics and Operative Dentistry (Rey Juan Carlos University, Alcorcón, Spain) with a deficient composite veneer and root canal treatment in a maxillary left lateral incisor (2.2). The restorative treatment was determined according to the amount of remaining tooth. Then, it was chosen a plan for the treatment based on canal retreatment, core build with composite resin and placement of a fiberglass post, and finally cementation of a lithium disilicate crown.

Conclusions
The clinical success of these ceramic restorations depends on the cementation procedure, therefore it is necessary to follow judiciously all the steps that that this procedure demands this procedure in order to obtain excellent aesthetic, biological and functional results.

- Oral Presentation 72
TITLE: Effects of EDTA on Wave-One files
AUTHORS: Seguí Troth A, Castillo Felipe C, García de Carellán R, Bâguena Gómez JC.
SOURCE: J Clin Exp Dent. 2014 1;6 (Supplement1):S34.
* doi:10.4317/jced.17643856
http://dx.doi.org/10.4317/jced.17643856

Objectives
To evaluate the action of 15% EDTA as intracanal lubricant on Wave-One files after five root canal preparations.

Materials and Methods
Forty-five root canals were instrumented using Wave-One™ Endodontic Reciprocating System. A total of 9 files were used, divided in 3 groups (n=3 each): (1) Wave-One Small #21, (2) Wave-One Primary #25, (3) Wave-One Large #40 files. All biomechanical preparations were done according to manufacturer instructions until work length (1 mm short of the apical foramen) and all the files were lubricated with EDTA. Wave-One Files were sterilized with glutaraldehyde (60') after each use and were studied under microscope (40x) after first, third, fifth use and without using.

Results
No differences were observed after the first use in comparison with the un-used files. Surface wear was observed in apical and middle area of the file in 100% of Small files; only apical wear in 100% of Primary files and 33.3% of Large files.

After the fifth use, all Small files broke in apical third (100%). 66.6% of Wave-One Primary #25 files presented corrosion. Blade loss was observed in 100% of Wave-One Small files, 66.6% of Wave-One Primary files and 33.3% of Wave-One Large files.

Conclusions
The use of EDTA seems to limit the number of biomechanical preparations with Wave-One files, particularly of Small #21 files which must be used just once. The files remaining could be used up to 3 times at the most.

- Oral Presentation 73
TITLE: Full upper arch restoration with composite and ceramics
AUTHORS: Sepúlveda Tendillo S, Faus Matoses V, Faus Matoses I, Alegre Domingo T, Faus Llácer VJ.
SOURCE: J Clin Exp Dent. 2014 1;6 (Supplement1):S34.