of a periapical lesion or the expansion of an existing one. These CBR systems provide valuable information that can be used to devise a tailored therapeutic approach.

- Oral Presentation 14

TITLE: Lithium disilicate crown rehabilitation on 1.1

AUTHORS: Costas Soto A, Rosel Gallardo E, Jiménez Martínez JD, Ortega Molina A, Rodríguez Pérez M, Otero Ávila A, Del Castillo Salmerón R.

SOURCE: J Clin Exp Dent. 2014 1;6 (Supplement1):S7.

* doi:10.4317/jced.17643799
http://dx.doi.org/10.4317/jced.17643799

Introduction

Through this case report we show the replacement of a metal-ceramic crown on 1.1, with an important aesthetic difficulty because of gingiva shade projected by the metal and the opacity of the material itself.

Case report

We report the case of a woman who comes on January 2014, to Máster Propio de Odontología Estética, University of Granada, with a metal-ceramic crown on 1.1, with a previous root canal treatment, without clinical symptomatology or radiological signs of pathology. The main reason that the patient relates is to equalize the crown on 1.1 to 2.1 in terms of colour, form, length, and to improve the aesthetic removing the gingiva shade generated by the old metal - ceramic crown. In the initial study we carry out the Digital Smile Design (DSD) which is transferred to a diagnostic wax of the right central incisor, in which we take on a silicone matrix to make, later, the provisional crown. In the moment of the metal - ceramic crown remotion, we can see that the gingiva shade is due to the metallic neck of the removed crown, and that the core colour is acceptable to be rehabilitated with a lithium disilicate crown. Thanks to the provisional crown remodeling we can level gigival margins on 1.1 and 2.1 as well as zenith, form and size. After that, we took digital impressions for the definitive lithium disilicate crown.

Conclusions

Lithium disilicate is the material of choice in some clinical cases of anterior rehabilitations so we can resolve the opacity or aesthetics problems generated by the gingiva shade that are created by another materials like metal-ceramic crowns.

- Oral Presentation 15

TITLE: Leptin activates STAT3 signaling pathway in human dental pulp.

AUTHORS: Crespo-Gallardo I, Martín-González J, Sánchez-Domínguez B, Martín-Jiménez M, Segura-Egea JJ.

SOURCE: J Clin Exp Dent. 2014 1;6 (Supplement1):S7.

* doi:10.4317/jced.17643799
http://dx.doi.org/10.4317/jced.17643799

Objectives

After leptin receptor (LEPR) identification in normal and inflammed human dental pulp, a role for leptin in this tissue has been accepted. This study aims to assess if leptin signal transduction in human dental pulp involves STAT-3 phosphorylation.

Materials and Methods

Fifteen dental pulp samples were obtained from freshly caries- and restoration- free extracted human third molars. Pulp samples were processed and to study the possible activation of STAT-3 by leptin, human dental pulp was stimulated with human leptin and solubilized lysed samples were analyzed by Western blot using antibodies that specifically recognize the tyrosine phosphorylated form of STAT-3 (P-STAT-3).

Results

Leptin stimulated JAK-STAT pathway by promoting STAT-3 tyrosine phosphorylation. This signalling pathway was confirmed in all human dental pulps. Western blot analysis revealed the presence in the pulp samples of a protein with apparent molecular weight of 93 kDa, which corresponds to the estimated molecular weight of P-STAT-3. The amount of P-STAT-3 in every sample was controlled with anti-β-tubulin immunoblot. Tyrosine phosphorylation of STAT-3 was observed in response to human leptin treatment. Activation of STAT-3 was observed at 0.1, 1 and 10 nM leptin but the maximal activation of STAT-3 was observed at 0.1 nM leptin. The relative amount of P-STAT-3 in stimulated pulps was significantly higher than in unstimulated pulps (p < 0.05).

Conclusions

STAT-3 is involved in leptin signalling pathways in human dental pulp. To further understand the signal transduction of leptin in human dental pulp, it is important to assess the major other signalling pathways known to be activated by leptin receptor in other systems.